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Nonconcavity of the Magnetization in 
Ising Ferromagnets 

James  L. Monroe 1 
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Some Ising ferromagnets having nonconcave magnetization are presented as 
counterexamples to the often assumed case of concave magnetization. 
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In 1968 Kelly and Sherman (1~ in a paper on correlation inequalities listed a 
number of  open questions, one being: Prove or disprove that for ferro- 
magnetic Ising systems the average magnetization per spin M is a concave 
function of the external magnetic field H for H > 0. By ferromagnetic systems 
we mean systems with positive interactions between spins. Two years later, 
Griffiths et  al. (2) gave a proof  for ferromagnetic Ising systems having only 
pair interactions and H. The proof  was based on the following correlation 
inequality: 

(~ i~ j~k )  - ( ~ i ) ( ~ / r k )  - (o-j)(o-io-k) - ( ~ D ( o - i ~ )  + 2 ( ~ i ) ( ~ ) ( c r D  ~ 0 (1) 

where the a's are lsing spin variables, a = + 1, and where the subscripts i, j, 
and k label the ith, jth, and kth spins. 

The restriction to pair interactions is an essential restriction in the proof  
of the inequalities. Kelly and Sherman (t) gave a counter example to this 
inequality using a system of Ising spins with a three-body interaction. The 
inequality is, however, only a sufficient condition for the concavity of the 
magnetization, not a necessary condition. We know of no results on the 
actual concavity or lack of concavity of M for ferromagnetic Ising systems 
other than those for systems with pair interactions (2) and those for systems 
containing only one spin. (3) 

Since the concavity of M is used in proving certain thermodynamic 
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inequalities for critical point exponents (4'5) and generally is considered a 
plausible conjecture for ferromagnetic Ising systems, m examples of positive 
interaction systems with nonconcave M are of interest. In the remainder 
of the paper we give examples of such systems. First we begin with some 
notation and definitions. 

The average magnetization per spin M for a system of N spins is 

M = ~ (6~) (2) 
i = 1  

where (6i)  is the thermal average of o-i- It is given by 

(o-i) = ~" ai exp[-~ut~({o-})]/2 e x p [ -  ~/t~({a})] (3) 
1o} flu} 

where {o-} is the set of allowed configurations of the system and .Jf(({o-}) is the 
Hamiltonian of the system. 

The first example is a slight generalization of the three-body interaction 
system of Kelly and Sherman (1) used as a counterexample to inequality (1). 
The Hamiltonian of the system is 

J/t~ = -Ko-lo263 - ,](o1o2 -Jr- 620" 3 + o"361) - H(O- 1 + cra + 63) (4) 

where we take J ~> 0, H >1 0, and K >/0. Then M is easily found to be 

X 4 sh(3H + K) + s h ( H -  K) 
M = X4 ch(3H + K) + 3 c h ( H -  K) (5) 

where X ~ e J. The second derivative of M with respect to H evaluated to 
lowest order in H is 

~32M 8[(24X r  3 - 1 / v  3 ) + ( 9 - 3 X  4 + 1 9 X  8 -g X 1 2 ) (V  - l / V )  

•H 2 [(3 + X4)(V+ l /V)] 3 

(6) 

where V = e ~. Both the numerator and denominator are positive for certain 
values of Xand V, e.g., J(~ < 2 and V > 1. Therefore in the region of small H, 
M is convex for a range of values of X and V. 

In the above example the three-body interaction term does not have the 
spin-flip symmetry usually associated with ferromagnetic interactions, i.e., if 
we take the negative of all spin values, we do not have the same interaction 
energy. Because of this lack of symmetry, M is no longer an odd function 
of H. One might suppose that if we restrict our interactions to being both 
positive and having this spin-slip symmetry, M would be concave for all 
H >  O. That this is not the case is shown by the next example. 
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Cons ide r  a four-spin  system with H a m i l t o n i a n  

. ~ ( { 0 . } )  = - L0-10-20-30-4 - J(0-10-2 + 0-20-3 + 0-30.~ + 0-~0-1) 

- H(0.1 + 0- 2 ~- 0" 3 Jr- 0"4) (7) 

The magne t i za t ion  is found  to be 

X s W 2 sh(4H)  + 2X 4 sh(2H)  
M : (8 )  

X 8 W 2 ch(4H)  + 4X 4 ch(2H)  + 2X 4 W 2 + W 2 

where X -= e J and  W = e L. The  second der ivat ive  o f  M with respect  to H to 

lowest  o rder  in H is 

32M 
OH 2 - { 1 6 X 4 H [ ( 4 X  4 + 16X 8 + 12X lz _ 8 X  16 _ 8 X 2 ~  6 

+ (1 + 4X 4 + 14X 8 + 20X 12 - 39X16)W a 

- (4X ~ + 8X 8 + 36X12)W 2 - 32XS]} 

x [(1 + 2X 4 + X S ) W  2 + 4X4] -3  (9) 

The d e n o m i n a t o r  is posi t ive;  the n u m e r a t o r  can be made  posi t ive when 

(1 + 3X ~) > 2X 12 (10) 

by choos ing  W l a r g e  enough.  F o r  example ,  let X 4 = 1.2; then for  W ~> 2 the 
n u m e r a t o r  is posit ive.  Therefore  as in the previous  example  for small  H 

the magne t i za t ion  is convex. 
We conc lude  with two examples  which are var ia t ions  of  the previous  

system. These i l lustrate  first that  one can have the nonconcav i ty  o f  M in 
h igher  spin systems,  and  second,  in the t h e r m o d y n a m i c  limit.  F o r  the first 
example  we replace the 0. i o f  Eq. (7) with Si, where S~ = + 1 or  0. Setting, 
for  s implici ty,  J equal  to zero,  M is 

m = [ 2 W  2 sh (4H)  + 6 W s h ( 3 H )  + ( 6 W  + 4 ) s h ( 2 H )  + 4 W s h ( H ) ]  

x ]-2W 2 ch (4H)  + 8 W c h ( 3 H )  + (12W + 8 ) c h ( 2 H )  

+ 3 2 W c h ( H )  + ( 6 W  2 + 13)] -1 (11) 

To leading o rde r  in H the second der ivat ive  o f  M with respect  to H is 

02M H ( 2 0 4 8  W 6 "q- 41600 W 5 + 171616 W 4 - 270210 W 3 - 45952 W 2 + 7808) 

c~H 2 (8 W 2 + 65 W +  8) 3 

(12)  

and as before  for  W large this is posit ive.  
In our  final example  we cons ider  a col lect ion o f  2 N  0.-spins as shown in 

Fig. 1. As before  the 0.'s take  only the values _+ 1. The  H a m i l t o n i a n  for the 
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system is 

(~-i  O" i+~ O" i+?. 

l 
M. 

I 
Fig .  1 

%, o',',.~ 

N N 

.~({~, ~'}) = - L  Z ~,o-/~,+ lo-i+1 - H Z (~i + 07) (13~ 
i = l  i = 1  

where we set aN+l = o'1 and o-}+ 1 = a'l. We will be interested in finding M 
when N ~  oo. This can be found by the usual t ransfer  matr ix  method.  (6~ 
After taking N - .  oc 

ch(/4) sh(~) 
M =  

[sh4(H) + (1 /W 4) ch(2H)]  1/2 

1 - I / W  4 

• 1 - ch2(H) + [sh4(H ) + ( l /W4)  ch(2H)] l /2  (14) 

where again W -  e L. The  complexi ty  of  M is seen in Fig. 2, where M is 
plot ted as a function of  H for various values of  W. 
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The above examples illustrate that the concavity of M may not be as 
ever-present as one might conjecture, since by adding positive four-body 
interaction to systems with pair interactions we destroy the concavity of M at 
small H. However, a check of the magnetizations of a six-spin system with 
only a six-body interaction and an eight-spin system with only an eight-body 
interaction shows M to be concave for small H. The concavity of M seems 
to be a subtle feature of the system and we seem to be far from being ~ible 
to state necessary and sufficient conditions for this concavity. 
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